
Windows Command Help Index
Basic Information

Introduction
Aliases
Batch Files
Command Recall
Filename Completion
Multiple Commands
Parameter Substitution
Redirection
Using the Browser
Using Help
Using the Keyboard
Using the Menu
Windows Command Variables

Commands
Alphabetical

Command Index
Categorical

Batch Commands
DOS Commands
File Commands
Windows Commands
WindowsCommand Commands

Notes
Arguments
Command Execution
Command Options
Executing Windows Command
Processing the Command Line
Using Quotes
TaskIDs
Wildcards

Reference
Error Messages
Menu File Syntax
Windows Command License Agreement

Introduction
Windows Command is a command-line interface designed for Microsoft

Windows.    Just as Windows is not a replacement for all DOS-based programs,
Windows Command is not meant to be a replacement for COMMAND.COM.   
It is a method of interfacing with Windows in a familiar command-line
environment.    It can be used to minimize the use of DOS-based command
lines while in Windows, and can also be used as a replacement for shells like
Program Manager or File Manager.

Windows Command is a blend of a command line and a graphical
program.    It features user-customizable pull-down menus with submenus
containing: all the Windows Command commands (which can be "pulled
down" onto the command line), all programs shipped with Microsoft
Windows, (a single menu selection will execute any of the programs), and
access to the Windows Command help facility.    In addition, the entire menu
bar can be expanded to include menus of your own design.    Windows
Command also features a pop-up command history dialog that allows point-
and-shoot access to previously executed commands, and a File Browser that
allows you to bring a complete filename to the command line by simply
selecting the file in a file dialog box.

Windows Command is a powerful command-line interface.    It has
many features which make using the command line easier, such as multiple
commands per line, command recall, filename completion, and command
aliases.    It also has powerful command processing functions, such as
redirection of standard output, parameter substitution, user-definable-and-
accessible variables and wildcard support.

Windows Command has been designed to allow keyboard access to all
features of its own, and also many features of Windows, without the use of a
mouse.    It allows executing, activating, moving, resizing, minimizing,
maximizing, and closing Windows programs from the command line.    You
can also find and display window and class information for any window on
the desktop (including hidden and child windows), as well as a number of
other Windows functions, such as arranging icons on the desktop, loading a
text file or even the entire screen buffer to the clipboard, and managing file
associations, all using simple commands, and without touching a mouse.

This help file assumes that you have basic knowledge of DOS and of
Windows.    If you are new to this system, you may want to keep your DOS
and Windows manual handy for reference.

Windows Command is a user-supported program.    If you have any
suggestions, comments or problems concerning Windows Command, I invite
and request you to write to me at the address below:
Michael B. Tierney
205 Inglewood Dr.
Pittsburgh, PA 15228
or send me electronic mail on Compuserve:
70604,1512
from Internet/Bitnet: 70604.1512@compuserve.com

Thank you for using Windows Command.    I hope you find it to be a
useful tool, and a productive new way to use the Microsoft Windows
environment.

Using the Menu
The Windows Command menu allows access to almost every command

and feature available in Windows Command.    In addition to the powerful
features found in the default menu, you can define portions of the menu to
execute anything that can be typed at the command line.

The default menu has five main submenus: File, Edit, Commands,
Execute, and Help.    Each of these allows access to powerful abilities within
the Windows Command environment.
File

This submenu contains Browse, which allows access to the Windows
Command File Browser, an Exit Windows selection, to exit the Microsoft
Windows environment, and an Exit selection, to quit Windows Command.
Edit

This submenu has a Copy Screen Buffer selection, that allows you to
copy the entire contents of the screen buffer (which includes all the text you
can see by using the scroll bars on the Windows Command window) to the
clipboard.
Commands

This menu selection contains categories of listings of all the available
commands.    The command listing is separated into categories: Batch file
commands, File system commands , DOS function commands , Windows
environment commands, and Windows Command environment commands .

Selecting one of the commands from the menu will bring that
command down to the command line.    Thus, selecting "Dir" from the "File"
category will make "Dir" appear on the command line.    At that point, you
can press F1 to bring up the help screen for that command, or hit <ENTER>,
and the command will execute.
Execute

This menu selection contains a listing of all the Windows programs
shipped with Microsoft Windows, and allows you to execute any given
program by selecting it from the list.

This submenu will be removed from the Windows Command menu bar
when you load a custom menu with the Menu command.
Help

This menu selection allows access to the Windows Command help
system.    It includes an Contents selection, which will bring up the Windows
Command Help Index, a Windows Command Basics selection which will
bring up the Introduction to Windows Command, a Using the Keyboard
selection, which will bring up the available command keys, Using Windows
Command Help, which will show how to use Windows Command Help, and
About Windows Command..., which shows author information for Windows
Command.

Customizing the Menu
The menu can be customized by using the Menu command to load a

Windows Command menu template file.   
When you execute a Menu command, the Execute submenu is

removed from the Windows Command menu bar, and the menu defined in
the menu file begins in its place.    The menu file syntax is simple, but if a
mistake is found, an error is returned, and the menu is restored to the
default.

Note:
The Windows Command menu interfaces very closely with the

command line.    Because of this, all the menu selections except for Help
disable during command execution.    To demonstrate this for yourself,
execute a Pause command, and try to access the menu.

Batch Files
A batch file is a text file which contains a listing of commands to be

executed in order.    You can create such a file using Notepad, which comes
with Windows.    Commands are entered one-per-line in the file, with a
maximum command length of 255 characters.    "Windows Command Batch"
files must be given the file extension ".WCB".

When you first start Windows Command, it searches for and executes
the file AUTOEXEC.WCB, if it is found in any directory on your DOS path.

Windows Command has several commands available specifically for
batch execution.    The If command allows conditional execution of
commands, and Goto will branch execution to a label.

A batch file label consists of a colon ":", followed by the label name.   
For example, :ThisLabel is a label named ThisLabel, and the command
Goto ThisLabel will subsequently start batch file execution at the label
ThisLabel.

A sample batch file follows:
@echo off
echo This is a test batch file.
goto MakeTheTestFile
:EraseTheTestFile
echo Erasing the test file...
erase testfile.$$$
if not exist testfile.$$$ goto EndTheTestBatch
:MakeTheTestFile
echo Making the test file...
dir > testfile.$$$
goto EraseTheTestFile
:EndTheTestBatch
echo Ending the test batch file...
exit
Execution begins with @echo off, which will suppress the batch file
commands from appearing on the screen.    Next, "This is a test batch
file..." will be echoed to the screen, then execution will go to the label
MakeTheTestFile.    "Making the test file..." will echo to the screen, and
then the output from a dir command will be routed into the file TESTFILE.$
$$.    Execution will branch to EraseTheTestFile, "Erasing the test file..."
will echo to the screen, then TESTFILE.$$$ will be erased.    At that point,
the file TESTFILE.$$$ will cease to exist, so that when if not exist testfile.
$$$ then goto EndTheBatchFile executes,    the batch file will branch to
EndTheBatchFile

You can also use parameter substitution and Windows Command
variables in batch files to send command line arguments or variables to
commands.    This allows you greater flexibility in the execution of batch files.

Remember that when using a batch file to set aliases with parameter
substitution or variables in them that you must use double percent signs (%
%) in order to get the single percent signs into your alias.    This is because

when the command executes from the batch file, the command is searched
for percent signs that indicate a parameter substitution or variable.

Important Note:
Do not write batch files that either call themselves infinitely or use an

infinite GOTO loop.    This can make the batch file execution dominate your
system resources and crash or halt your system.    If you have problems such
as this with batch files, the cause is most likely an infinite loop.

Wildcards
Wildcards provide a way to run a command on numerous files without

having to type in each file name.    Commands which support wildcards are:
Attrib, Copy, Del, Dir, Erase, Except, Findfile, Move, Print, Rd, Ren, Rename,
Rmdir, and Type, and the Filename Completion feature.

The wildcard characters are * and ?.    For example, "*.DOC", references
all files in the given directory that have the extension ".DOC".    "??.DOC"
references all files in the given directory that have the extension ".DOC", and
a filename that is two characters or less long.    "MYFIL?.*" references any file
whose filename begins with "MYFIL", and is no more than 6 characters long,
and has any file extension.    "*" is any file with any filename and no
extension, and "*.*" is any file with any filename and extension.

Note: "*ANY.*" will be read as "*.*", since any characters following an
asterisk in either the filename or extension are ignored.

Processing the Command Line
If the command is running from an alias or batch file, the command

line is first checked for parameter or variable identifiers, which are any
strings inside opening and closing percent signs (%).    If any are found, they
are substituted with their appropriate value.    If a percent sign is entered on
the command line without a second percent sign to match, an error will be
generated.    To use a single percent sign in an alias or batch file command,
you must use double percent signs (%%), and they will be translated into one
percent sign.

The command line is checked for the multiple command character, the
caret (^).    If you need to use a caret for any other reason, put the whole
expression inside back quotes.    For example, to delete the file
THIS^FIL.DOC, you will need to enter ERASE "THIS^FIL.DOC". Otherwise, the
command will be split up and executed as ERASE THIS, and then FIL.DOC.   

Next, the command line is checked for redirection, and the redirection
is performed.    The standard output redirection symbols are ">" to begin a
new file, or ">>" to append the file.

The command is checked for a leading at sign (@), which means that
the command will not be echoed to the screen, even if echo is on.

Finally, the command line is split into arguments, and the command is
then executed.

Command Execution
Windows Command tries several methods of finding the executable

program when processing the command line:
File Extension Completion:

If a file extension is not given when you type the program name,
Windows Command will try to find the first executable on your DOS path or
given path with the matching extensions .WCB, .BAT, .PIF, .EXE, and .COM,
searching for files with extensions in that order.    This means that if you type
XYZ, and both XYZ.WCB and XYZ.COM exist, XYZ.WCB would execute.   
Likewise, if only XYZ.EXE and XYZ.COM existed, XYZ.EXE would execute, etc.
Command Extension Matching:

If a file extension is given when you type the program name, the
extension is first checked to make sure it is an executable (with
extensions .WCB, .BAT, .PIF, .EXE, .COM), and if so, the file is executed.   
Otherwise, the extension is checked for a file association.    If an association
is found, the associated program is started with the given file as the startup
file.    If no association is found for a non-executable file, the filename is
returned as an Unknown Command.

When the command execution is complete, Windows Command will
display the name and TaskID of the program executed, if it is available.    A
Windows Command variable LASTEXEC is then set with the Task ID of the
program that was run last.

Redirection
Windows Command supports the redirection of standard output.    This

means that any text from any command that appears in the Windows
Command window can be routed into a file.    The redirection symbols are
">", which erases the file if it exists and then puts the new text into it, and
">>", which appends the new text to the file, whether it exists or not.    The
redirection symbol goes at the end of the command, and is followed by the
file name that you want the output to go to.

For example, DIR > DIRFILE.TXT will create a file called DIRFILE.TXT
that contains the output of the Dir command.

Please Note: Output from the Type command can not be redirected,
since the effect would be the same as a Copy command.

Using Aliases
Aliases are commands defined with the Alias command, and are

comprised of other commands.    Once set, aliases can be run just like any
other internal command.    Aliases take precedence over Windows Command
internal commands, so that you can use aliases to redefine the default
actions of Windows Command commands.    For example, defining an alias as
ALIAS DIR DIR /W %*%

will cause Dir to default to a wide display, as opposed to a single-
column display.    The %*% is a parameter substitution that brings all of the
arguments after the command (the first argument) to the alias.

You can also use parameter substitution and Windows Command
variables in aliases to send command line arguments or variables to
commands.    This allows you greater flexibility in the execution of aliases.

Note:
When comparing two strings with the IF command, it is required that

the two parameters to be compared be inside double quotes.    This means
that if you have an alias that uses the IF command, you must use double
double quotes to get the quotes into your alias.    Otherwise, the quotes will
be removed when you create the alias at the command line, and IF will not
work properly.

This should also be kept in mind for other instances where quotes are
necessary for commands inside an executing alias.

Important Note:
Since aliases can call one another, be careful not to create an alias that

calls itself infinitely.    This can cause the alias execution to dominate your
system resources and crash or halt your system.    If you have problems such
as these with aliases, the cause is most likely an infinite loop.

Using Browser
The Windows Command File Browser allows you to bring a file's

complete pathname to the command line by selecting the file from a file
dialog box.    To access the browser, select File-Browse from the menu or
press F2.

To select a file in the Browser, first select the drive and/or directory
from the "Directories:" list, then select the filename from the "Files:" list, and
press "OK" or <ENTER>.    The selected file will then echo to the command
line.

You can also search for more specific file names by typing portions of
the filename into the "Filename:" box, and then pressing <ENTER>.

If you press ESC or "Cancel", the File Browser will close without echoing
anything to the command line.

Windows Command Variables
Windows Command allows you to set an unlimited number of named

variables to any value.    Variables are set using the Set command.    Once
set, they can be accessed only in aliases or batch files, but the entire
variable table can be viewed using the Set command.

Variable names may be up to 30 characters in length, must start with a
letter ('a' through 'z'), and contain only letters and numbers ('0' through '9',
and 'a' through 'z').

Variables are referenced by enclosing the variable name inside percent
signs (%).    Some examples of variables follow:

Set an alias as follows:
ALIAS TEST ECHO %THISVAR%

now set the variable THISVAR to a value:
SET THISVAR `THIS IS A VALUE`

now execute the alias:
TEST

and the output will be
THIS IS A VALUE

The following line would produce the same results inside a batch file:
ECHO %THISVAR%

If a variable is not found, the variable reference will be removed, and
nothing will be substituted in its place.    Be careful not to allow any
extraneous spaces or other characters between the percent signs, or else the
variable will be interpreted incorrectly.

Variables work in much the same way as parameter substitution.

Multiple Commands
Windows Command allows more than one command to be executed on

a line.    The separational character, the caret (^), marks the beginning of a
new command on a line.    For example, DIR ^ ECHO HI THERE will execute
as if you entered DIR, and then ECHO HI THERE.

When you use multiple commands, if a command fails, the remainder
of the line does not execute.    For example, if you entered DIR /X ^ ECHO
HI THERE, DIR /X would exit with an error (Invalid Parameter), and ECHO HI
THERE would never execute.    This allows you to structure a series of
commands that require successful completion to continue.

If you need to use a caret for reasons other than as a multiple
command identifier, you must enclose the argument with the caret(s) in
quote characters.

Parameter Substitution
Windows Command allows you to access command-line parameters

within aliases and batch files.    Parameters are arguments on the command
line that are separated by "white space" characters, and are all numbered,
starting from zero.    The first argument (parameter zero) on any command
line is always the command, so parameter 1 is always the the first argument
passed to the command, followed by parameter 2, and so on.

Parameters are referenced by enclosing the parameter number inside
percent signs (%).        Some examples of parameter substitution follow:

Set an alias as follows:
ALIAS TEST ECHO %2% %1%

now execute the alias:
TEST THERE HI

and the output will be
HI THERE

The following line would produce the same results inside a batch file:
ECHO %2% %1%

Multiple Parameter Referencing
There are occasions when you are not sure how many parameters will

be on the command line, but you want to use all or most of them.    Windows
Command allows you to reference more than one parameter using the
wildcard character, the asterisk (*).    To return all the parameters from
parameter number 1 forward, use %*%.    To return all the parameters
including the command (parameter 0) forward, use %0*%.    Some parameter
substitution examples follow:

Set an alias as follows:
ALIAS TEST ECHO %*%

now execute the alias:
TEST HI THERE EVERYONE

and the output will be
HI THERE EVERYONE

The following line would produce the same results inside a batch file:
ECHO %*%

or set an alias as follows:
ALIAS TEST ECHO %2*%

now execute the alias:
TEST HI THERE EVERYONE

and the output will be
THERE EVERYONE

The following line would produce the same results inside a batch file:
ECHO %2*%

If a numbered parameter does not exist, the parameter reference will
be removed, and nothing will be substituted in its place.    Be careful not to
allow any extraneous spaces or other characters between the percent signs,

or else the parameter will be interpreted incorrectly.
Parameter substitution works in much the same way as Windows

Command variables.

Command Options
Many of the commands have options which modify the way they

execute.    These are all listed in the individual commands' help screens.    The
help screens use the convention of the foreslash (/) to show command
options, however, all commands will accept either a foreslash or a dash (-) as
a command option delimiter.    For example, DIR /W and DIR -W will execute
exactly the same way.

Executing Windows Command
You can specify a command to execute on startup by typing the

command as a parameter when you run Windows Command.    For example,
typing WCOMMAND DIR /W ^ CLS in the Run dialog of Program Manager or
File Manager (or whatever you use to start Windows Command) will cause
Windows Command to start, and execute DIR /W, and then CLS.

Normally, when you start Windows Command, it searches for and
executes the AUTOEXEC.WCB batch file if it exists.    However, if you specify a
command on the command line (which could be another batch file),
AUTOEXEC.WCB will not be executed on startup, and only the given
command will be run.

Filename Completion
With filename completion, you can search for a filename and insert it

into a command by scrolling through file names.    First, you enter none or as
much of the filename as you want to search for, including wildcards, then
press F9 or TAB.    The filename will be inserted automatically into the
command line, and you can continue scrolling through different filenames by
pressing F9.    If you go too far, you can scroll backwards through the files by
pressing F8.

Windows Command searches for matching filenames by assuming a
wildcard (asterisk) at the end of both the filename and file extension name.   
Therefore, typing F.D then F9 will begin scrolling through all files matching
the pattern F*.D*.

For example, if you want to open Notepad to edit the file SYSTEM.INI in
your Windows directory:
·      if you are in another directory, type NOTEPAD \WINDOWS\S.INI, make
sure the cursor is on the partial filename, or on the space to the right of the
last character, and hit F9.    Continue pressing F9 (or press F8 if you
accidentally go too far) until you reach SYSTEM.INI.    Then press ENTER to
process the command.
·     if you are in your Windows directory, type NOTEPAD S or just NOTEPAD
(with a space after the last letter), make sure the cursor is on the partial
filename, or on the space to the right of the last character, (or to the right of
the space after "NOTEPAD") and hit F9.    Continue pressing F9 (or press F8 if
you accidentally go too far) until you reach SYSTEM.INI.    Then press
ENTER to process the command.

Command Recall
Command Recall allows you to recall previously entered commands to

edit or execute them again.    Pressing the UP arrow key will recall the last
command entered.    Pressing UP repeated times will continue back to the
first command, and then wrap around to the last command again.    Once UP
has been pressed, pressing DOWN will recall the commands in reverse order.
You can view the entire command history list by entering the History
command.

Command Editing Keys
The following are special keys used by Windows Command:

Left Move cursor one character to the left
Right Move cursor one character to the right
Home Move cursor to beginning of command line
End Move cursor to end of command line
PageUp Scroll display up one page
PageDownScroll display down one page
Enter Enters the command to process
Insert Toggles insert mode
Delete Deletes character hilighted by cursor
BackspaceDeletes character immediately before cursor
Escape Erases entire command line
F3 Command Recall - Forward
Up Command Recall - Forward
Down Command Recall - Backward
F9 Filename Completion - Forward
Tab Filename Completion - Forward
F8 Filename Completion - Backward
Shift-Tab Filename Completion - Backward
ALT Accesses the Menu
F1 Help - Context-sensitive help if command line is not empty
F2 Opens the Windows Command File Browser
Ctrl-Ins Copies the contents of the screen buffer to the clipboard
Ctrl-Break Interrupts command activity
Alt-F4 Exit Windows Command

Using Help
There are a number of ways to access the Windows Command Help

Facility: pressing F1, selecting Help options from the menu, or issuing the
Help command at the command line.

When you press F1, Windows Command looks at the current command
line.    If the line is empty, the Help Index is displayed.    If there is a command
on the command line, the first word is read, and the help screen for the
appropriate command will be displayed.

The Help submenu gives instant access to the Help Index, the
IntroductionI screen,    the Using the Keyboard screen, and this screen, Using
Help.

The Help command issued at the command line can display either the
Help Index or context-sensitive help.

Batch Commands
These commands are used in Windows Command Batch files:
Goto Branch to a Label
If Conditional command Execution
Pause Pause Until User Presses a Key
Rem Remark or Null Command

File Commands
These commands control files and directory operations:
Attrib Get/Set File Attributes
Cd Change Current Directory
Chdir Change Current Directory
Copy Copy a File
Del Erase a File
Dir Display a Directory of Files
Erase Erase a File
Except Execute on All Except Specified Files
Findfile Find Files on an Entire Drive
Md Make a New Directory
Mkdir Make a New Directory
Move Move a File
Pwd Print Working (current) Directory
Rd Remove a Directory
Ren Rename a File
Rename Rename a File
Rmdir Remove a Directory
Ser Get a disk serial number
Type Display a file on the screen
Vol Get a Disk Volume Label

DOS Commands
These Commands give information on, or work through the Operating
System:
Date Get/Set the System Date
Mem Display Free Memory and System Statistics
Path Display DOS Path
Print Print a File
Set Get/Set DOS/Windows Command Variables
Time Get/Set System Time
Ver Display System Program Versions
Verify Get/Set DOS Verify Flag

Windows Command Commands
These commands control the Windows Command environment:
? Access Windows Command Help
About Shows Windows Command author information
Alias Set an Alias for a Command
Beep Beep the Speaker
Break Get/Set Break Checking Status
Cls Clear the Screen
Color Change Screen Colors
Echo Echo Line, or Get/Set Echo Status
Eset Get/Set Windows Command Environment Variables
Exit Exit Windows Command
Help Access Windows Command Help
History View and Recall Command History
Inkey Reads a user keystroke into a variable
Input Reads user input into a variable
Menu Set or Reset User-Definable Menus
Prompt Set Command Prompt
Set Get/Set DOS/Windows Command Variables
Title Set Information Displayed in Title Bar
Unalias Remove an Alias Name
Unset Remove Windows Command Variables

Windows Commands
These commands control the Windows environment:
Activate Activates a Program
Arrange Arranges the icons on the desktop
Assoc Get/Set file extension associations
Cdx Change Directory and Execute
Clipload Load a file to the Clipboard
Close Close a Program
Maximize Maximize a Program
Minimize Minimize a Program
Restore Restore a Minimized Program
Runmax Load and Maximize a Program
Runmin Load and Minimize a Program
Send Send Commands/Data to Applications
Task Display all Running Programs
Winclass Display Window Class Information
Winexit Exit Windows
Wininfo Display Window Information
Winmove Move a Program Window
Winsize Resize a Program Window

Windows Command Command Index
This is a complete list of Windows Command Commands.
? Access Windows Command Help
About Shows Windows Command author information
Activate Activates a Program
Alias Set an Alias for a Command
Arrange Arranges the icons on the desktop
Assoc Get/Set file extension associations
Attrib Get/Set File Attributes
Beep Beep the Speaker
Break Get/Set Break Checking Status
Cd Change Current Directory
Cdx Change Directory and Execute
Chdir Change Current Directory
Clipload Load a file to the Clipboard
Close Close a Program
Cls Clear the Screen
Color Change Screen Colors
Copy Copy a File
Date Get/Set the System Date
Del Erase a File
Dir Display a Directory of Files
Echo Echo Line, or Get/Set Echo Status
Erase Erase a File
Eset Get/Set Windows Command Environment Variables
Except Execute on All Except Specified Files
Exit Exit Windows Command
Findfile Find Files on an Entire Drive
Goto Branch to a Label
Help Access Windows Command Help
History View and Recall Command History
If Conditional command Execution
Inkey Reads a user keystroke into a variable
Input Reads user input into a variable
Maximize Maximize a Program
Md Make a New Directory
Mem Display Free Memory and System Statistics
Menu Set or Reset User-Definable Menus
Minimize Minimize a Program
Mkdir Make a New Directory
Move Move a File
Path Display DOS Path
Pause Pause Until User Presses a Key
Print Print a File
Prompt Set Command Prompt
Pwd Print Working (current) Directory

Rd Remove a Directory
Rem Remark or Null Command
Ren Rename a File
Rename Rename a File
Restore Restore a Minimized Program
Rmdir Remove a Directory
Runmax Load and Maximize a program
Runmin Load and Minimize a program
Send Send Commands/Data to Applications
Ser Get a disk serial number
Set Get/Set DOS/Windows Command Variables
Task Display all Running Programs
Time Get/Set System Time
Title Set Information Displayed in Title Bar
Type Display a file on the screen
Unalias Remove an Alias Name
Unset Remove Windows Command Variables
Ver Display System Program Versions
Verify Get/Set DOS Verify Flag
Vol Get a Disk Volume Label
Winclass Display Window Class Information
Winexit Exit Windows
Wininfo Display Window Information
Winmove Move a Program Window
Winsize Resize a Program Window

About

Purpose:
Shows the author and registered user information for Windows

Command.

Usage:
ABOUT

Example:
ABOUT will display a dialog box containing the author and

registered user information for Windows Command.

Activate

Purpose:
To activate an application's window.

Usage:
ACTIVATE <taskid>

Example:
ACTIVATE `MICROSOFT WORD` will activate the matching program.

Alias

Purpose:
Sets an alias for a command or series of commands.    The alias acts as

a Windows Command internal command, and will override existing
commands of the same name.

Usage:
ALIAS aliasname command(s)

Example:
ALIAS MV MOVE %*% will allow you to type MV to execute a MOVE

command.
ALIAS DIR DIR /W %*% will make DIR give a default wide display.

Arrange

Purpose:
Arranges the icons on the desktop.

Usage:
ARRANGE

Example:
ARRANGE will arrange the icons on the desktop so that they are all in

neat rows.

Assoc

Purpose:
Get or set associations between a filename extension and the program

that uses the file with that given extension.

Usage:
ASSOC <LIST|extension> <program name>

<extension> is the 3-characters following the "." in the filename.
<program name> is the full pathname of the program that uses

files with the extension given.

Example:
ASSOC LIST will display a listing of all the existing filename

associations.
ASSOC BMP will show the current setting for the BMP extension

and prompt you for whether you want to remove that association or not.
ASSOC WCB C:\WINDOWS\WCOMMAND.EXE will create an

association between files with the extension ".WCB", and Windows
Command.    After executing this command, whenever a file with the
extension ".WCB" is run from Program Manager, File Manager, Windows
Command, or any other program that uses associations, Windows Command
will automatically be started.

Attrib

Purpose:
To Display or set the Read-Only, System, Hidden or Archive attributes

of a file or subdirectory.

Usage:
ATTRIB [+r|-r] [+s|-s] [+h|-h] [+a|-a] filename [/D]

+r/-r Add/Remove Read Only Attribute
+s/-s Add/Remove System File Attribute
+h/-h Add/Remove Hidden Attribute
+a/-a Add/Remove Archive Attribute
/D Set or Display Subdirectory Attributes

Example:
ATTRIB *.* will display the attributes of all files in the current directory.
ATTRIB -R +S -H +A THISFILE.DOC will add System and Archive

attributes to and remove Read-Only and Hidden attributes from the file
THISFILE.DOC.

Beep

Purpose:
To Beep the Speaker.

Usage:
BEEP

Example:
BEEP will cause the speaker to sound a tone.

Break

Purpose:
To Display Ctrl-Break Checking Status, or turn it on or off.    The default

is ON.

Usage:
BREAK [ON|OFF]

Example:
BREAK will show whether break checking is on or off.
BREAK ON will set break checking on.

Cdx

Purpose:
To automatically change to the directory in which a program resides

when executing a program.    This will allow programs which expect to be
executed from the same directory as they are in to run properly.

Usage:
CDX <program>

Example:
CDX C:\123\LOTUS will execute the command LOTUS from

the directory C:\123.
CDX PROGMAN will start Program Manager from your windows

directory.

Chdir or Cd

Purpose:
To change the current directory on the default or specified drive.

Usage:
CHDIR <directory>

Example:
CHDIR \ will change the current directory to the root of the default

drive.
CD A:\ will change the current directory of the A drive to the

root directory; the current drive will remain the same.

Clipload

Purpose:
To load a file into the clipboard.    The file size must be less than 64K.

Usage:
CLIPLOAD <filename>

Example:
CLIPLOAD THISFILE.DOC will load the file THISFILE.DOC to the

clipboard.

Close

Purpose:
To Close a currently active task.    A message is sent to the program,

telling it to close; whether or not the task actually ends will depend on the
application itself.    Task IDs can be found by issuing the TASK command.

Usage:
CLOSE <taskid>

Example:
CLOSE 9337 will close the task with the Task ID 9337.

Cls

Purpose:
Clears the Windows Command Window.

Usage:
CLS

Example:
CLS will clear the screen.

Color

Purpose:
To change the colors of the Windows Command Window.

Usage:
COLOR <color> [ON <color>]

<color> is one of the following:
RED
GREEN
BLUE
YELLOW
MAGENTA
CYAN
BLACK
WHITE

Example:
COLOR BLACK ON WHITE will set the text color to black and the

background color to white.

Copy

Purpose:
To Copy or Append a file to another file.

Usage:
COPY [/A|/B]<fromfile> [+ [/A|/B] <fromfile2> ...] <tofile>

/A Copy remaining files in Ascii mode
/B Copy remaining files in Binary mode

Example:
COPY THISFILE.DOC /A + THISTOO.DOC A:\THATFILE.DOC will copy

THISFILE.DOC and append THISTOO.DOC to the file A:\THATFILE.DOC.

Date

Purpose:
Set the System Date.

Usage:
DATE <month> <day> <year>

<month> is an integer between 1 and 12
<day> is an integer between 1 and 31
<year> is the full number of the year (i.e. 1960, not 60)

Example:
DATE 7 4 1991 will set the date to July 4th, 1991.

Dir

Purpose:
To display a directory listing of files.

Usage:
DIR [/1/2/4/W/P/B/U/N/T/S/Onedsgu/Adrsha] [<filename>]

/1 display one column of files (default)
/2 display two columns of files
/4 display four columns of files
/W display five columns of files
/P pause after each page of files
/B display only filenames, no other information
/U display filenames in upper case
/N do not display file attributes in listing
/T display only directory size totals and number of files
/S display all files in current directory and subdirectories
/O sort order

- Reverse any of the below orders
N by Name
E by Extension
D by Date
S by Size
G Directories First
U Unsorted

/A display only files with given attributes
- display all files except with given attributes
D Directory
R Read Only
S System
H Hidden
A Archive

Example:
DIR /W will display the files in the current directory in wide (5-

column) format.
DIR A:\DIRECT will display the files in the directory A:\DIRECT.

Echo

Purpose:
To display whether echo is on or off, set the echo state, or echo a line

to the screen.    Echo defaults to Off.

Usage:
ECHO [ON|OFF|<line to be echoed>]

Example:
ECHO will display whether echo is on or off.
ECHO OFF will turn echo off.
ECHO HI THERE will echo "HI THERE" to the screen.

Erase or Del

Purpose:
To erase (or delete) a file.

Usage:
ERASE <filename> [/P]

or DEL <filename> [/P]
/P to prompt for each file delete

Example:
DEL *.DOC /P will delete all files with the extension .DOC, and

prompt the user for each file deleted.

Eset

Purpose:
To get or set Windows Command environment variables.

Usage:
ESET <variable name> <new value>

<variable name> is one of the following:
HistMinLen is the minimum number of characters a command

must have to be saved into the command history.    <new value> must be
between 1 and 255.    Default size is 3.

HistLines is the number of commands that will be saved into
the command history.    <new value> must be between 1 and 255.    Default
value is 30.

ScrBufLines is the number of lines the screen buffer will hold in
memory.    <new value> must be between 25 and 999.    Default value is 60.

Beep determines whether the warning beep is heard.    <new
value> must be ON or OFF.    Default is ON.    This will not affect the Beep
command.

Menu determines whether the menu is visible or not.    <new
value> must be ON or OFF.    Default is ON.

Example:
ESET SCRBUFLINES 100 will set the screen buffer size to 100 lines

and allow you to scroll back up 100 lines.
ESET MENU OFF will remove the menu from the top of the

Windows Command window.

Except

Purpose:
To execute a command on files except for a series of specified files.

Usage:
EXCEPT (<filename>...) <command and arguments>

Example:
EXCEPT (*.DOC *.TXT) DEL *.* will delete all files in the current

directory except for those with extensions .DOC and .TXT.

Exit

Purpose:
To exit Windows Command.

Usage:
EXIT

Example:
EXIT will cause Windows Command to close.

Findfile

Purpose:
To search an entire drive for files.    Findfile searches for matching files

recursively from the directory given in the pathname argument.    If no
directory is given, the entire current drive is searched, starting at the root
directory.

Usage:
FINDFILE <pathname>

<pathname> an "imaginary" filename to search for.   
Findfile takes the directory portion of the pathname as the directory to
begin the search in.    The filename portion is what is searched recursively
through the subdirectories for.

Example:
FINDFILE C:*.BAKwill search the C: drive starting at the \ (root)

directory for all files with a .BAK extension
FINDFILE D:\WINDOWS*.EXE will search the D: drive starting at the \

WINDOWS directory for all files with a .EXE extension.

Goto

Purpose:
To branch to a label in a batch command.    For more information on

labels in batch files, read the Batch Files section.

Usage:
GOTO <label>

Example:
GOTO RALPH will go to the label ":Ralph" in the current batch file,

and continue executing commands from that point in the file.

Help or ?
Purpose:

To access the Windows Command help file.

Usage:
HELP <topic>

or ? <topic>

Example:
HELP TYPE will bring up the help screen for the TYPE command.

History

Purpose:
To display a history of entered commands for browsing or recalling, to

list or load history entries from a file, or to clear the history list.

Usage:
HISTORY [CLEAR|LIST|LOAD <filename>]

CLEAR will erase all entries from the history list
LIST will list the history list to the screen
LOAD will load history entries from a file
<filename> the file to load history entries from

To create a file of history entries, redirect the output of the HISTORY
LIST command to a file.

Example:
HISTORY will create a dialog box with all the commands held in the

command history list.
HISTORY LIST > HISTORY.LST will save the current history list to a file
HISTORY LOAD HISTORY.LST will load history entries from the file

HISTORY.LST

If

Purpose:
Allows conditional execution of a command.    Note that when

comparing two strings, variables or parameters using the " == " operator,
you must leave a space before and after the " == ".

Usage:
IF [NOT] < ERRORLEVEL <number> | EXIST <filename> > |

"[<string>|<variable name>|<parameter id>]" == "[<string>|
<variable name>|<parameter id>]" <command>

NOT will make the <command> execute if the case given is not
true.

ERRORLEVEL will return true if the last command exited with a
return code of <number>

EXIST will return true if the file <filename> exists.
<command> is the command that will execute if the conditions

are correct.
<string> is any text string
<variable name> is any Windows Command variable name,

inside percent signs
<parameter id> is any parameter substitution identifier

Example:
IF ERRORLEVEL 0 CLS will clear the screen only if the last command

executed returned an error code of 0.
IF NOT EXIST C:\WINDOWS\WCOMMAND.EXE DIR C:\ will execute a

display of the directory C:\ only if the file WCOMMAND.EXE is not found in the
C:\WINDOWS directory.

IF "%THISVAR%" == "MICROSOFT" ECHO WINDOWS PARENT! will
echo the line "WINDOWS PARENT!" to the screen if the variable THISVAR is
set to "MICROSOFT".

Inkey

Purpose:
To prompt the user to press a key, then put that input into a variable.

Usage:
INKEY <prompt string> <variable name>

Example:
INKEY `ENTER ANY NUMBER: ` ANYNUMBER will prompt the user to

ENTER ANY NUMBER: , and then will wait for the user to press a key, and will
put that key into the variable ANYNUMBER.

Input

Purpose:
To prompt the user for input, then put that input into a variable.

Usage:
INPUT <prompt string> <variable name>

Example:
INPUT `ENTER ANY NUMBER: ` ANYNUMBER will prompt the user to

ENTER ANY NUMBER: , and then will wait for the user to enter a string,
followed by <ENTER>, and will put that input string into the variable
ANYNUMBER.

Maximize

Purpose:
To maximize a task.    Task IDs can be found by issuing the TASK

command.

Usage:
MAXIMIZE <taskid>

Example:
MAXIMIZE 9337 will maximize the task with the task ID number 9337.

Mem

Purpose:
To display system statistics, free RAM, and free memory on the default

drive.

Usage:
MEM

Example:
MEM will display the Windows mode, CPU type, screen resolution, free

RAM and free disk space.

Minimize

Purpose:
To minimize a task.    Task IDs can be found by issuing the TASK

command.

Usage:
MINIMIZE <taskid>

Example:
MINIMIZE 9337 will minimize the task with the task ID number 9337.

Mkdir or Md

Purpose:
To make a new directory.

Usage:
MKDIR <directory>

or MD <directory>

Example:
MD NEWDIR will make a subdirectory named NEWDIR in the

current directory.

Menu

Purpose:
To set or reset the Windows Command user-definable menus from the

given file.

Usage:
MENU <filename>

Example:
MENUwill load the menu from the file WCOMMAND.MNU.

Move

Purpose:
To move a file.

Usage:
MOVE <fromfile> <tofile>

Example:
MOVE *.DOC A:*.TXT will move all files with a .DOC extension to the

A drive in files with the same name, but with the extension .TXT.

Path

Purpose:
Displays the DOS Path.

Usage:
PATH

Example:
PATH will display the current Path set in DOS.

Pause

Purpose:
To prompt the user to press a key before continuing execution.

Usage:
PAUSE

Example:
PAUSE will display a prompt and wait for the user to press a key.

Print

Purpose:
To print a file through the Windows print queue.

Usage:
PRINT <filename>

Example:
PRINT *.DOC will print all files with the extension .DOC.

Prompt

Purpose:
To change the command prompt.

Usage:
PROMPT <string>

<string> is any text, which may include the following special
strings:

$p current drive and path in lower case
$P current drive and path in upper case
$G/$g the ">" character

Example:
PROMPT HI pg will set the prompt to "HI " plus the current directory

plus the ">" character.

Pwd

Purpose:
Prints out the current working, or current, directory.

Usage:
PWD

Example:
PWD will display the current directory.

Rem

Purpose:
A null, or "do nothing" command.    REM can be used to echo a line to

the screen if echo is on.

Usage:
REM <text>

Example:
REM HI THERE will do nothing if echo is off or write "REM HI THERE"

to the screen if echo is on.

Rename or Ren

Purpose:
To rename a file or directory.

Usage:
RENAME <dirname|filename> <newname>

or REN <dirname|filename> <newname>

Example:
REN *.DOC *.TXT will rename all files with a .DOC extension to a

file of the same name, but with a .TXT extension.

Restore

Purpose:
To restore a currently minimized task.    A message is sent to the

program, telling it to restore; whether or not the task actually does will
depend on the application itself.    Task IDs can be found by issuing the TASK
command.

Usage:
RESTORE <taskid>

Example:
RESTORE 9337 will restore the application with the task ID 9337.

Rmdir or Rd

Purpose:
To remove an empty directory.

Usage:
RMDIR <directory>

or RD <directory>

Example:
RD OLDDIR    will remove the directory OLDDIR from the current

directory.

Runmax

Purpose:
To load and maximize a program.

Usage:
RUNMAX <program>

Example:
RUNMAX THISAPP.EXE    will execute the program THISAPP.EXE,

and initially maximize it.

Runmin

Purpose:
To load and minimize a program.

Usage:
RUNMIN <program>

Example:
RUNMIN THISAPP.EXE    will execute the program THISAPP.EXE, and

initially minimize it.

Send

Purpose:
Sends a menu command sequence or character sequence to a

program.    Note that many applications use Multiple Document Interfaces,
which means that more than one window is running inside another window.   
To SEND to a window inside an application, you must find the Task ID for the
appropriate child window by using the Task command.

Usage:
SEND <taskid> <string>

<string> includes any text that you wish to send, or
[MENU,<hotkeys>] to send a series of hotkeys to a program menu.

Example:
SEND `MICROSOFT WORD` Hiwill send the string "Hi" to the window

matching the name "Microsoft".
SEND `MICROSOFT WORD` [MENU,FO] will activate the menu in the

given program, and select the menu items with hotkeys "F" and then "O" (for
example, File-Open).

Ser

Purpose:
To display a disk's DOS volume serial number.

Usage:
SER <disk>

Example:
SER will display the serial number from the default drive.
SER A: will display the serial number of the disk in drive A:.

Set

Purpose:
To display the DOS environment variables and display or set Windows

Command variables.    Windows Command variable names may be up to 30
characters in length.

Usage:
SET [DOS|WC|<variable name> <value>]

DOS display only DOS variables
WC display only Windows Command variables
<variable name>any string up to 30 characters in length to use

as a variable name
<value> the value to set the variable to, multi-word strings

must be put inside back quotes (`)

Example:
SET will display all currently set DOS and Windows Command

variables.
SET DOS will display only DOS environment variables.
SET WC will display only Windows Command variables.
SET THISVAR 1000 will set a Windows Command variable named

"THISVAR" to the string "1000"

Task

Purpose:
To display all currently active tasks and their associated task IDs.    If a

Task ID is given, that window's child windows will be displayed.    Task sets a
Windows Command variable LASTTASK if a task ID is given.

Usage:
TASK <taskid>

Example:
TASK will display all the currently active tasks in a list.
TASK `MICROSOFT WORD` will display all the child windows for the

matching program.

Time

Purpose:
To display or set the system time.

Usage:
TIME [<hour> <minute> <second>]

Example:
TIME    will display the current time.
TIME 0 50 30 will set the current time to 12:50AM and 30 seconds.

Title

Purpose:
To set or reset the information displayed in the Windows Command title

bar.

Usage:
TITLE [CWD|UCWD|DATE|TIME|DATETIME|RESET]
The options put the following information is put into the title bar:

CWD current "working" directory
UCWD upper case current "working" directory
DATE current date
TIME current time
DATETIME current date and time
RESET resets the title bar to default (no information

displayed)

Example:
TITLE TIME will display the time in the Windows Command title bar.
TITLE RESET will set the title bar to the default - program name

only.

Type

Purpose:
To display a file on the screen.

Usage:
TYPE <filename>

Example:
TYPE *.DOC will display all the files with the extension .DOC on

the screen.

Unalias

Purpose:
To remove a previously assigned command alias.

Usage:
UNALIAS <aliasname>

Example:
UNALIAS CDD will remove the alias CDD from the alias list, if it was

previously defined.

Unset

Purpose:
To remove a previously assigned Windows Command variable.

Usage:
UNSET <varname>

Example:
UNSET NAME will remove the variable NAME from the Windows

Command environment, if it was previously defined.

Ver

Purpose:
To show the versions of DOS, Windows, and Windows Command

currently running.

Usage:
VER

Example:
VER will display the versions of DOS, Windows and Windows

Command on the screen.

Verify

Purpose:
To get or set the DOS verify flag.    If verify is on, all disk writes will be

verified to ensure they were written correctly.    The default is off.    Turning
verify on will slow disk writes slightly.

Usage:
VERIFY [ON|OFF]

Example:
VERIFY will display the state of the verify flag.
VERIFY OFF will turn the verify flag off.

Vol

Purpose:
To display the current volume label on the default or specified drive.

Usage:
VOL <disk>

Example:
VOL A: will display the volume label on the disk in drive A.

Winexit

Purpose:
To exit Windows.

Usage:
WINEXIT

Example:
WINEXIT will prompt the user to verify whether or not to exit

windows.    If the user presses "Y", all currently running applications will be
closed, and Windows will terminate.

Winclass

Purpose:
To display an window's class information.    This information includes

the class name, class module handle, module file name, class window
function, class icon handle, class cursor handle, class background brush,
window information extra bytes, class information extra bytes, class style,
and class style names.    Where appropriate, the cooresponding numbers are
given in both hexadecimal (followed by an 'x'), and decimal (followed by a
'd') (function addresses are all in hexadecimal).

Usage:
WINCLASS <taskid>

Example:
WINCLASS `MICROSOFT WORD`will display the window class

information on the matching program window.

Wininfo

Purpose:
To display information on a window.    This information includes the

window text (title bar text), window handle (the "Task ID" number), parent
window handle (if this number is not 0, the window is a child window),
application instance handle, executable file name, window function address,
menu handle, window rectangle with respect to the screen, window rectangle
with respect to its parent window (only if it is a child window), window client
rectangle, window style, window style names.    Where appropriate, the
cooresponding numbers are given in both hexadecimal (followed by an 'x'),
and decimal (followed by a 'd') (function addresses are all in hexadecimal).

Usage:
WININFO <taskid>

Example:
WININFO `MICROSOFT WORD` will display information on the

matching program window.

Winmove

Purpose:
To move an application's window.

Usage:
WINMOVE <taskid>

Example:
WINMOVE `MICROSOFT WORD` will initiate a keyboard-based move

command on the matching program.

Winsize

Purpose:
To resize an application window.

Usage:
WINSIZE <taskid>

Example:
WINSIZE `MICROSOFT WORD` will initiate a keyboard-based resize

command on the matching program.

Error Message Codes
Error Code Error Message

10 No Closing Quote
15 Interrupt Key Pressed
20 Insufficient Memory
21 Invalid Command Name
22 Unknown Command
23 Launch Failed
30 Invalid Command Usage
31 Invalid Parameter
40 Invalid Drive
41 Insufficient Disk Space For
50 Path Not Found
51 Invalid Path
60 Cannot Change To Directory
70 File Not Found
71 File Exists
72 File Cannot Be Copied To Itself
79 Cannot Create Directory
80 Cannot Remove Current Directory
81 Error Removing
82 Error Renaming
83 Error Moving File
90 Access Denied
100 Unable To Exit Windows
110 Invalid File Size
120 Invalid Window Task Id
121 Task Not Found
130 Printer Initialization Failed
200 Label Not Found
210 Error In Menu File
220 Invalid Parameter Substitution

Menu File Syntax
Menu files allow you to customize the Windows Command menu.    You

can edit a menu file by using Notepad, or any other text editor.    The file
itself should have an .MNU file extension, and the file is loaded using the
Menu command.

The menu file syntax consists of structures for submenus, executed
and non-executed menu items, separating lines, columns, menu hot keys,
and comments.
Submenus

All menu files must start with a submenu declaration.    This submenu
will be the top level menu that will take the place of the Execute default
submenu.    The syntax for submenus is as follows:
Submenu Name{

Submenu Name 2{
}

}
Any leading spaces or tabs will be ignored when reading the submenu

name, and the name will end with the open bracket ({).    The submenu will
end with the closing bracket (}), and submenus can be nested inside of each
other
Menu Items

A menu may have as many as 2000 total menu items.    After this,
additional menu items will be ignored.    The syntax for menu items is as
follows:
Menu Item Name=Command Line
or
Menu Item Name 2=;Command Line 2

Any leading spaces or tabs will be ignored when reading the menu
item name, and the name will end with the equals sign (=).    The command
line is considered to be all the text after the equals sign, including trailing
spaces.    It is this command that will be typed and executed at the command
line when the menu item is selected.

If you precede the command line with a semicolon (;), the command
will only be echoed to the command line and not executed when you select
the menu item.    You must be sure there are no spaces between the equals
sign and the semicolon.
Separators, and Columns

The following are special menu item names that create various types
of separations in menus:
@COL@=
@COLBAR@=
@LINE@=

@COL@ will create a new column for menu items.    @COLBAR@ will
create a new column separated by a vertical line.    @LINE@ will create a
separating horizontal line.

Comments
Any line with a semicolon (;) in the first character position is considered

a comment.    Be careful not to allow any spaces or tabs before the
semicolon.
Menu Hot Keys

To create a hot key to a menu item or submenu, put an ampersand (&)
before the character in the item name that you want to use as the hot key.   
When the menu is loaded, you will see an underline below the character that
you selected, and if you press that letter when the menu is active, it will be
selected.    Be careful to select unique letters within each submenu.   
Submenus with items that have more than one of the same letter selected as
a hot key, may not allow you to select the correct menu item with the letter
keys.

Arguments
Windows Command splits up the command line into arguments by

scanning the line for text separated by "White space" characters and
command option delimiters.

"White space" characters include semicolons (;), commas (,), spaces,
and tabs.

Command option delimiters include the foreslash (/), and the dash (-),
since any command option in Windows Command can be set apart by either
a foreslash or a dash.

To process a string containing any of the above characters as a single
argument, you must enclose the string in back quotes (`).

Using Quotes
Windows Command uses back quotes (`) and double quotes (") to allow

the literal translation of strings.    Back quotes are removed from the
command line when sending the command, and double quotes are left in,
and sent to the command.    For example,
"DIR STRING"

would be sent to the command processor as "DIR STRING", and
`DIR STRING`

would be sent to the command processor as DIR STRING.
Any argument which contains "white space" characters, command-

option delimiters, multiple command identifiers, or any other reserved
character, must be enclosed in double quotes to be translated properly.   
Double back quotes (``) or double double quotes ("") that are not part of
another quoted argument are translated as a single quote in the final string. 
For example,
"HI""THERE" or `HI``THERE`

would be translated as first argument "HI", second "THERE".
HI""THERE or HI``THERE

would be translated as one argument HI"THERE or HI`THERE.
Quoted arguments appear in the echoed command if echo is on, but

are removed when the command is broken into arguments.

Task IDs
Any command with a TaskID argument will accept either a Task ID

number, or a title or portion of a title displayed in a program's title bar.    Task
ID numbers and program titles can be found using the Task command.

If a title string is used, the first matching top-level program (no child
window names will be searched), searched in the same order shown by the
Task command, will be acted upon.    For example, if the Task command
shows:
    ID          Name
7900    MICROSOFT WORD
8000    MICROSOFT EXCEL

then typing `MICROSOFT` as a Task ID will act on Task 7900.    To act
upon Task 8000, you must enter at least `MICROSOFT E`.

If you need to enter a window title with more than one word, you will
have to enclose the title in back quotes, to ensure that the title is interpreted
as one argument.

Windows Command License Agreement
This document contains information on the legal and ethical use of all versions of Windows
Command.    Using Windows Command implies agreement with all the terms described
below.
1) COPYRIGHT INFORMATION

Windows Command is a copyrighted program, protected under United States
Copyright Law and provisions in international treaties.    These laws prohibit
unauthorized copying, and other unlawful incorporation of any portion of this
program into any other work without express permission from the author.    Violation
of the terms of this license agreement is    unlawful.
Under no circumstances may any version of Windows Command be reverse
assembled, reverse compiled, or translated in any way.

2) LIMITATION OF LIABILITY
Windows Command is a powerful command-line interface for Windows, and it
provides access to many low-level operating system functions.    Because of this, you
should use Windows Command carefully.    You assume full responsibility for all results
brought about by commands issued intentionally or accidentally at the Windows
Command command line.
The limititation of liability for Windows Command is as follows:    in no event will I be
held liable for any consequential or incidental losses of profits, business interruption,
loss of records or data or any other loss arising from the use of Windows Command,
even if I have been forewarned of such damages.    I will also not be held liable for
consequenses arising from incompatibilities of Windows Command with third-party
products.

3) SHAREWARE VERSION
Evaluation of the shareware version of Windows Command takes place in a 21-day
period after the first installation on your machine.    This period of time should be
enough for you to decide whether or not the program will meet your needs, and
whether you would like to register.    AFTER THIS EVALUATION PERIOD EXPIRES, YOU
MUST EITHER REGISTER, OR STOP USING WINDOWS COMMAND.
COPYING OF THE SHAREWARE VERSION IS PERMITTED ONLY IF ALL THE ORIGINAL
FILES CONTAINED IN THE ORIGINAL SHAREWARE RELEASE MADE BY MICHAEL B.
TIERNEY ARE LEFT TOGETHER, UNCHANGED IN ANY WAY, AND ARE TRANSFERRED AS
A COMPLETE PACKAGE.

4) REGISTERED VERSION
A user is registered when the complete registration package, including the required
information and registration fee is received at the address listed below.    The
registered copy of Windows Command will be mailed as soon as possible.    Once you
mail your complete registration package, you may continue to use the shareware
version of Windows Command until your registered version arrives.    Registered users
of Windows Command are granted a license to use the program within the rights
provided in this document.    The registered user will own the magnetic media that
Windows Command is recorded on, but the entire code recorded on that medium
remains the property of Michael B. Tierney; the title to the program itself is not
transferred upon registration.    This license is not a sale of the original code or any
copy.    It is a sale of the right to execute the code in a normal fashion under Microsoft
Windows.
COPYING OF THE REGISTERED VERSION IS PERMITTED ONLY BY THE USER TO WHOM
THE PARTICULAR COPY OF WINDOWS COMMAND IS REGISTERED, AND MAY BE DONE
SO FOR USE ONLY BY THE REGISTERED USER, AND FOR NO OTHER INDIVIDUAL.    A
registered user may not modify the Windows Command program, or incorporate any
portion of the program into any other work, without first obtaining express written
consent from Michael B. Tierney.    MODIFYING WINDOWS COMMAND, SELLING OR
GIVING AWAY OF A COPY OF THE REGISTERED VERSION OF WINDOWS COMMAND TO
ANY THIRD PARTY, OR USE OF A REGISTERED VERSION OF WINDOWS COMMAND BY

AN INDIVIDUAL OTHER THAN THE REGISTERED USER IS A VIOLATION OF THIS
LICENSE AND THE ABOVE-MENTIONED FEDERAL COPYRIGHT LAWS.    The registered
user for each registered copy of Windows Command will be displayed in the "About"
dialog box, which can be viewed by issuing the "About" command at the Windows
Command command-line, or by selecting Help-About from the menu.
When updates of Windows Command are released, registered users will be given the
option of a free or reduced-price upgrade.    If an upgrade is purchased, the original
license will cover the upgrade as well as the original product.
REGISTERED USERS MAY NOT SUBLICENSE, ASSIGN, OR TRANSFER THE LICENSE FOR
WINDOWS COMMAND, NOR CAN THEY SELL, LEASE OR RENT THE PROGRAM.    If a
registered user fails to comply with all provisions of their license, the license will be
considered terminated.    When the license is terminated by either user request, or by
violation of the license agreement, all copies of the software must be deleted.

5) USE RESTRICTIONS
The shareware version of Windows Command may be used on as many computers as
is needed so long as the rules above are strictly followed.    The same is true for the
registered version, however, only one machine may be running a copy of the
program at any one time, and the program may not be transferred electronically over
a network to another computer.    After 21 days, the shareware version must be either
registered or discarded, and only the registered user may use his/her registered copy
of Windows Command.

6) NETWORK REGISTRATION
Windows Command may be registered for a network or multi-user machine by
purchasing a discounted multi-user license.    When using Windows Command on a
network or multi-user machine, the system's administrator must understand that use
of Windows Command by a non-registered user (any user other than users of the
registered network or machine) is illegal, and the administrator will be held legally
responsible for enforcing the policies of this license agreement on their system, and
insuring that only authorized users have access to Windows Command.
To register Windows Command for use on a network or multi-user machine, please
write to me at the address below.    Please include in your letter the number of users
on your system, how you would like to provide access to Windows Command
(whether on a server, or on individual workstations), the number of copies of program
disks you would like to receive, and an address, telephone or FAX number where you
can be contacted.    You will then receive further instructions on pricing, and how to
place your order.

7) QUESTIONS OR PROBLEMS
While I have carefully tested Windows Command and all its features for proper
function, I cannot guarantee that there will be absolutely no bugs or other program
errors (no software designer can).    If you detect a problem that can be reproduced
consistently, I ask that you please contact me as soon as possible, and I will do my
best to correct the problem.    My address is listed below.
If you have any questions regarding any of the above information, please feel free to
contact me at either of the below addresses:

Michael B. Tierney
205 Inglewood Dr.
Pittsburgh, PA 15228 USA

or
Compuserve: 70604,1512
Internet/Bitnet: 70604.1512@compuserve.com

